Nonexistence of global solutions of a class of coupled nonlinear Klein-Gordon equations with nonnegative potentials and arbitrary initial energy

نویسنده

  • Yanjin Wang
چکیده

In the paper we consider the nonexistence of global solutions of the Cauchy problem for coupled Klein-Gordon equations of the form

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations

  In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...

متن کامل

A Sufficient Condition for Finite Time Blow up of the Nonlinear Klein-gordon Equations with Arbitrarily Positive Initial Energy

In this paper we consider the nonexistence of global solutions of a Klein-Gordon equation of the form utt −∆u+mu = f(u), (t, x) ∈ [0, T )× Rn. Here m = 0 and the nonlinear power f(u) satisfies some assumptions which will be stated later. We give a sufficient condition on the initial datum with arbitrarily high initial energy such that the solution of the above Klein-Gordon equation blows up in ...

متن کامل

Spinning Q–balls in Abelian Gauge Theories with positive potentials: existence and non existence

We study the existence of cylindrically symmetric electro-magnetostatic solitary waves for a system of a nonlinear Klein–Gordon equation coupled with Maxwell’s equations in presence of a positive mass and of a nonnegative nonlinear potential. Nonexistence results are provided as well.

متن کامل

Global Weak Solutions of the Relativistic Vlasov-klein-gordon System

We consider an ensemble of classical particles coupled to a KleinGordon field. For the resulting nonlinear system of partial differential equations, which we call the relativistic Vlasov-Klein-Gordon system, we prove the existence of global weak solutions for initial data satisfying a size restriction. The latter becomes necessary since the energy of the system is indefinite, and only for restr...

متن کامل

Analytical solutions for the fractional Klein-Gordon equation

In this paper, we solve a inhomogeneous fractional Klein-Gordon equation by the method of separating variables. We apply the method for three boundary conditions, contain Dirichlet, Neumann, and Robin boundary conditions, and solve some examples to illustrate the effectiveness of the method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007